From Bear to Vault: Designing a New Protocol to
Extend the APT Communications Toolset

Nick Hendee
Department of Computing Security
Rochester Institute of Technology
Rochester, United States of America
kp.ai@protonmail.com

Abstract—With the growing complexity and prevalence of
state-sponsored Advanced Persistent Threats (APTs), exfiltration
of bulk sensitive data is becoming increasingly commonplace.
Furthermore, recent APTs and APT toolkits uncovered have been
utilizing creative methods to communicate with Command and
Control (C2) infrastructure as well as exfiltrate data, often using
multiple hard-to-detect methodologies such as trusted third-party
services, SMTP, or DNS. This paper proposes a scalable protocol
for managing multiple secure and reliable covert channels over
physical or digital means. Throughout we will show the desire
for, practical applications of, and future goals for this protocol.

Index Terms—covert channel, protocols, advanced persistent
threats, encipherment, security

I. INTRODUCTION

In 2013, FireEye broke ground by releasing a detailed
report on a likely state-sponsored Advanced Persistent Threat
(APT) group originating in China responsible for over 140
independent breaches and exfiltrating hundreds of terabytes
of data [1]. This was not the first activity of APT groups,
as APT activity stretches as back as far as 2006 [2], but it
would be far from the last. Five years later, the movements
or emergence of APT groups is commonplace, and publicly-
known active threats include APT38 [3], Reaper [4], Fancy
Bear [5], MenuPass Group [6], OceanLotus Group [7], APT33
[8], and Group 123 [9], among others.

APTs have a unique need for covert channels, as they
must establish and maintain long-term access to compromised
systems without arousing suspicion, often opting to deploy
beacons that utilize Command and Control (C2) infrastructure
[10]. This is further complicated by certain APTs needing to
exfiltrate data in bulk [10] - a noted shortcoming of many
traditional covert channels, whose throughput is often mea-
sured in bits per second [11] even when the immense speed of
Internet protocols is accounted for [12]. Thus, APTs needing to
exfiltrate large quantities of data use many different methods,
such as compromising trusted websites [13], abusing trusted
third-party cloud services, or mimicking trusted channels such
as TLS [9].

This paper evaluates previous work in covert channels, and
reviews how contemporary adversaries have been using covert
channels in their ongoing campaigns. Further, we elucidate a

Rochester Institute of Technology

Christopher Partridge
Department of Computing Security
Rochester Institute of Technology
Rochester, United States of America
chris @partridge.tech

new protocol for use in advanced threat simulation, as well
as extends on known capabilities to increase speed, reliability,
and flexibility of both data exfiltration and C2 tasks. Finally,
we present our implementation’s preliminary results, along
with our plans and considerations for further works.

II. LITERATURE REVIEW
A. Traditional Channels

The goal of covert channels was introduced by Lampson in
1973 [14] and extended to networks by Girling in 1987 [15].
Traditionally these channels fall into two categories: storage
channels, in which the sender embeds data for the receiver
to extract; and timing channels, which signal information by
modulating a resource over time [16]. The accepted commu-
nication model for covert channels, per Simmons [17] is a
prisoner problem: where two prisoners attempting to escape
must exchange messages while monitored by the warden, who
would put both prisoners in solitary confinement (thus elimi-
nating the chance of escape) should they became suspicious.

Many storage channels exist in the myriad of network
protocols such as [15] [18], and many focus on embedding
limited amounts of information in headers or metadata of
network protocols. Similarly, timing channels exist in network
protocols [19] [20], and focus on delaying network traffic in
order to signal data. A number of improvements have been
proposed to increase the speed or covertness [21] of these
channels, including timing coding [22] or entirely new models
[23]. These traditional methods adhere to the prisoner’s prob-
lem exactly, assuming that the warden is manually inspecting
all communications between the two prisoners - in this case,
networked machines.

B. APT Behaviors

In practice this is often not the case, as the volume of traffic
between networks is simply too high for manual inspection, so
the *warden’ of secure networks is often an Intrusion Detection
System (IDS) or Intrusion Prevention System (IPS), often
deployed at the edge of network trust zones [24]. So long as
the IDS/IPS does not flag traffic as suspicious (invoking man-
ual review), data exfiltration or C2 communications remain
undiscovered.

Because of this, covert channels selected by APTs tend
to be built on standard network protocols that are common
to their target’s environment and mimic normal user activity,
sacrificing covertness for simpler IDS/IPS evasion and speed.
A large number of APTs leverage DNS [7] [25], HTTP [5] [6],
HTTPS [9] [26], and SMTP [5] - all of which are normally
found in business environments. Many will also utilize covert
channels at the web application level, for example Reaper [4]
has been observed leveraging AOL IM, pCloud, and Dropbox.

Additionally, some APTs have become increasingly effi-
cient, for example APT38 opting to use modular malware [26]
and the CIA opting to write communications programs such
as Aeris that integrate seamlessly into their C2 software [27].
Some have even written tailored communications solutions to
route data through target networks over designated pivots, such
as Fancy Bear’s [28] XTunnel [29], abusing the failure to in-
spect traffic on a target’s local network. Adversary simulation
tools have grown similarly, with Cobalt Strike implementing
hybrid communications methods that allow it to communicate
over HTTP and DNS in parallel, increasing efficiency and
speed [30]. Cobalt Strike’s methodology is proven as well,
with real-world APTs such as Oceanlotus Group opting to
utilize parts of its software in the wild [31].

III. PROPOSED ARCHITECTURE
A. System Overview

To better solve some of the exfiltration problems that
APTs have, we propose a protocol titled "the Asynchronous
Remote Communications Tunneling Protocol” or ARC-TP.
This protocol is designed to enhance covert channels for C2
and data exfiltration that contemporary APTs are known to
use, enabling high data rates, greater flexibility and resilience,
and increased efficiency. Additionally, ARC-TP is designed
to be part of a modular system, acting as a middleman
between application logic and the channels that data is being
exfiltrated over. This allows an attacker to write simple channel
implementations and use a wide variety of channels, while
ensuring that data is exfiltrated in a secure and reliable manner.

ARC-TP is composed of three distinct parts: the wrapper
specification, Arc manager, and Arc handler. The Network
Architecture section will focus on the wrapper specification,
while the System Architecture section will focus on the Arc
manager and handler.

B. Network Architecture

There are two types of packets that are used by ARC-TP,
Negotiate and Message packets. Negotiate packets are used
to create channels, while Message packets contain encrypted
data. Both are to be sent over covert channels in the same
way: sending data by being queued into a wrapper’s “send”
queue, be that a file, location in memory, etc. for the wrapper
to dequeue and encode into a channel; and receiving data in
the inverse way, by being read from the channel it was encoded
into, then enqueued into a wrapper’s “received” queue. When
a wrapper dequeues the message, it should encode the message
data into whatever channel it wishes to use, and then send the

data over that channel to a receiving wrapper. For example, a
wrapper that uses DNS could encode data into a subdomain
of a common domain and query a remote wrapper that would
read those messages.

Before data can be exhanged, the client and server must first
agree on specifications, encryption ciphers, and connection
parameters through exchange of negotiation packets. There are
several flags available to set in a negotiate packet, as seen in
Table 1.

TABLE I
NEGOTIATE FLAGS
Flag Flag Data
ID Title Bitmask
NEGO | Negotiate | 0x0800
CONF Confirm 0x0001
CLONE Clone 0x0080

The NEGO flag denotes this is a negotiate packet. The
CONEF flag is set when a server accepts a client’s negotiation
request, and is returning its own verification data for key
establishment and authentication. The CLONE flag is used
for setting up additional channels sharing a single stream ID.

0 1 2 3
01234567890123456789012345678901
B s T ik s ST T R S P S S S S S S e

|version]| flags | encrypt/mac | jitter

B e T e i T e R S R e h it S R R S
| packet count | ...Data... |
B T e T ks s e P Sl P S S e e e ek s I P T P e

Fig. 1. The format of a Negotiate packet.

As you can see in Fig. 1, we are leaving space in the flags
section of the packet to allow for future expansions. Addition-
ally, you can see that we are including a brief “’version” field to
allow for version handling, an encryption and MAC selection
field so the handlers can set what cryptographic protocols are
being used, a 7jitter” field to denote timeout information, a
packet counter for easier ordering and acknowledgment, and
the data field.

Once a negotiation has occurred successfully and session
data is established, ARC-TP may begin exchanging infor-
mation through Message packets. The Message packet has
more flags available, for more granular control over how Arc
handlers interpret data, state changes, etc.

TABLE I
MESSAGE FLAGS

Flag Flag Data
ID Title Bitmask
SOM Start-of-Message | 0x0100
EOM End-of-Message 0x0200
EOS End-of-Stream 0x0400
ACK Acknowledge 0x0002
WRITE_FILE Write-to-file 0x0010
SET_JITTER Set-Jitter 0x0040

The SOM flag denotes that a new message is being started,
and while this flag is set the WRITE_FILE flag may also be

invoked to tell the Arc handler to write data to file instead
of to memory, in the event that a large quantity of data is
being sent. The EOM flag denotes that a message is being
finalized, and should all components of that message have
been transferred from one Arc handler to another, a callback
can be executed to inform application logic that a full message
has been received. The EOS flag denotes that the session is
being terminated, so when communication finishes the Arc
wrapper may terminate. The ACK flag denotes that messages
are being acknowledged in this message, providing both proof-
of-delivery and the ability to automatically resend on failure.
Finally, the SET_JITTER flag (similar to Aeris [27]) allows
the Arc handler to set a different timeout, allowing for slower
transmissions over low-bandwidth channels.

0 1 2 3
01234567890123456789012345678901
B T R it T e S T e R T T R et T T e R e e o R e ke ot o

|version| flags | stream id

B s s e T e e e e P O R e
| packet count | optional headers/data | ..Data. |
B e e T T e e
| message authentication code (if in use) |

B e it e T i T T i et

Fig. 2. The format of a Message packet.

Like the Negotiate packet, the Message packet in Fig. 2
includes lengthy version and flag fields, now with a stream ID
(established when a session is successfully negotiated), a data
section, and an optional MAC section.

C. System Architecture

The Arc handler handles session negotiation, session man-
agement, cryptographic services, channel management, and
data acknowledgment. It is a fast, two-way communications
handler that uses an API for data input and executes asyn-
chronous callbacks for data output to application logic. Ad-
ditionally, each arc handler may interact with many wrappers
simultaneously, and the use of session keys allows multiple
arc handlers to be running at the same time, allowing multiple
applications to use independent arc handlers on one system.

The Arc handler, seen in Fig. 3, has three main routines:
Client Initialization, Send Data, and Receive Data. The Arc
handler pulls from and pushes to many wrappers for covert
channels in a round-robin manner after initializing a connec-
tion over a single channel. While this does not provide channel
balancing built-in (ex. utilization of a slow DNS channel vs a
fast HTTPS channel), the problem can be mitigated by using
multiple wrappers of a higher channel speed. Additionally,
the Arc handler is designed to handle cryptographic operations
inline with other functionality, encouraging but not forcing the
use of encryption so that messages are secured from observers.

The Arc manager is meant to extend the Arc handler and
is used for managing negotiation and session creation on data
exfiltration or C2 servers, making it easier to globally apply
settings changes.

As you can see in Fig. 4, the Arc manager abstracts nego-
tiation overhead away from Arc handlers on remote servers

Client Initialization

Receive Data

Fig. 3. The Arc handler state machine.

Spawn protocol wrappers Load user's co
pawn p PP and available

Select a single wrapper

Select the next wrapper

Check the next message in
the receive queue

The next message is not

anegotiate message The next message is a

negotiate message

Dequeue the negotiate
message from that queue

The upport
e selected cryp(osys(em

The server supports the B
selected cryplosystem | ¢l negotiation function for Generale anegoite

the selected cryptosystem enquete ep‘y

Verification fails

reply stating the Spawn Arc handler
servers accemeu cryptosystems with session ID and

e ting
goli Drop message
and continue :

user's configuration

Fig. 4. The Arc manager state machine.

such as C2 or data exfiltration warehouses, and automatically
spawns Arc handlers for established sessions. It effectively
serves as a new connection listener over a number of wrappers,
so there is no overhead in user’s application logic.

Full-size versions of the above figures are included at
https://github.com/Koschei-Project/arcpub
for your convenience.

IV. FUTURE WORK

We have implemented preliminary versions of the ARC-TP
protocol in C for Windows, utilizing simple UDP wrappers,
without encryption. We have found that the Arc handler
overhead is fairly minimal, with under 1 MB of RAM used.

We would like to either expand the Arc protocol to cleanly
support tunneling in a way that is similar to XTunnel [29]
though this is currently easily achievable through the appli-

cation layer - simply add a callback to another Arc handler’s
send data function, and you have created a simple proxy that
can easily switch channels. Furthermore, we would like to
more clearly define a specification for the application layer
to integrate with ARC-TP (similarly to how Aeris integrates
with Collide [27]), and provide a robust API specification for
implementations of ARC-TP, possibly modelled after Berkeley
sockets.

As the protocol solidifies into a well-qualified “version 1”
we will also be doing extended testing of the protocol, both for
devising manners of effectively balancing the use of fast and
slow wrappers on a single system, as well as testing ARC-TP
in hard-to-tackle edge cases, such as extremely high latency
channels ex. USB flash disks moving from one location to
another, high noise timing channels, and more. We will also be
testing to see how many easy-to-detect network signatures this
protocol generates, and explore mitigations against signature
or rule-based detection.

V. CONCLUSION

While some parts of ARC-TP have yet to be fully elucidated
such as a formalized API for the Arc handler and Arc manager,
we believe that this is a step forward in line with how APT
groups have been expanding their communications toolKkits.
Additionally, a flexible and versatile system will greatly assist
APTs and advanced threat simulators to adapt to new and
changing environments. The ability of this protocol to be easily
extended with simple wrappers is a testament to its utility, and
future tests will hopefully confirm its design in a wide range
of environments and simulations.

REFERENCES

[1] Mandiant, APT1 - Exposing one of China’s Cyber Espionage Units, Fire-
Eye. [Online]. Available: https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-apt1-report.pdf.

[2] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains, lockheedmartin.com. [Online].
Available: https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-
Defense.pdf.

[3] N. Fraser, J. O’Leary, V. Cannon, and F. Plan, APT38: Details on
New North Korean Regime-Backed Threat Group, FireEye. [Online].
Available: https://www.fireeye.com/blog/threat-research/2018/10/apt38-
details-on-new-north-korean-regime-backed-threat-group.html.

[4] FireEye, APT37 (REAPER) The Overlooked North Korean Ac-
tor, FireEye. [Online]. Available: https://www?2.fireeye.com/rs/848-DID-
242/images/rpt_APT37.pdf.

[5] APT28: A Window Into Russia’s Cyber Espionage Operations?, Fire-
Eye. [Online]. Available: https://www.fireeye.com/content/dam/fireeye-
www/global/en/current-threats/pdfs/rpt-apt28.pdf.

[6] FireEye iSIGHT Intelligence , APT10 (MenuPass Group): New
Tools, Global Campaign Latest Manifestation of Longstanding Threat,
FireEye. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2017/04/apt10_menupass_grou.html.

[7] N. Carr, Cyber Espionage is Alive and Well: APT32 and the

Threat to Global Corporations, FireEye. [Online]. Available:
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-
apt32.html.

[8] J. O’Leary, J. Kimble, K. Vanderlee, and N. Fraser, Insights into
Iranian Cyber Espionage: APT33 Targets Aerospace and Energy
Sectors and has Ties to Destructive Malware, FireEye. [Online].
Available: https://www.fireeye.com/blog/threat-research/2017/09/apt33-
insights-into-iranian-cyber-espionage.html.

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

W. Mercer and P. Rascagneres, Korea In The
Crosshairs, Talos Intelligence. [Online]. Available:
https://blog.talosintelligence.com/2018/01/korea-in-crosshairs.html.

E. Middlelesch, Anonymous and Hidden Communication Channels: A
Perspective on Future Developments, thesis, 2015.

R. A. Kemmerer, A practical approach to identifying storage and
timing channels: twenty years later, IEEE. [Online]. Available:
https://ieeexplore.ieee.org/document/1176284/.

S. Zander, G. Armitage, and P. Branch, A Survey of Covert Channels
and Countermeasures in Computer Network Protocols, IEEE Commu-
nications Surveys, vol. 9, no. 3, 2007.

Operation Blockbuster: Unraveling the Long Thread of the Sony Attack,
Novetta. [Online]. Available: https://www.operationblockbuster.com/wp-
content/uploads/2016/02/Operation-Blockbuster-Report.pdf.

B. Lampson, A Note on the Confinement Problem, Commun. ACM, vol.
16, no. 10, Oct. 1973, pp. 613-615

C. G. Girling, Covert Channels in LANs, IEEE Trans. Software Engi-
neering, vol. SE-I3, no. 2, Feb. 1987, pp. 292-296.

National ~ Computer Security Center, US DoD, Trusted
Computer System Evaluation Criteria, Tech. Rep. DOD
5200.28- STD, National Computer Security Center, Dec. 1985,

http://csrc.nist.gov/publications/history/dod85.pdf.

G. J. Simmons, The Prisoners Problem and the Subliminal Channel, in
Proceedings of Advances in Cryptology (CRYPTO), pp. 5167, 1983.
Liping Ji, Wenhao Jiang, and Benyang Dai, A novel covert channel
based on length of messages, International Conference on e-Business
and Information System Security, 2009.

V. Berk, A. Giani, G. Cybenko, N. Hanover, “Detection of covert
channel encoding in network packet delays”, Technical Report TR536,
Dartmouth College. Nov. 2005.

S. Gianvecchio, H. Wang Detecting covert timing channels: an entropy-
based approach CCS07: Proceedings of the 14th ACM Conference on
Computer and Communications Security, ACM, New York, NY, USA
(2007), pp. 307-316.

H. Zeng, Y. Wang, W. Zu, J. Cai, and L. Ruan, New denition of
small message criterion and its application in transaction covert channel
mitigating, Journal of Software, vol. 20, no. 4, pp. 985996, 2009.

J. Wu, Y. Wang, L. Ding, and X. Liao, Improving performance of
network covert timing channel through Huffman coding, Mathematical
and Computer Modelling, vol. 55, no. 1-2, pp. 6979.

M. Hussain and M. Hussain, A High Bandwidth Covert Channel
in Network Protocol, International Journal of Advanced Science and
Technology, vol. 30, May 2011.

N. Pappas, Network IDS & IPS Deployment Strategies,
SANS. [Online]. Available: https://www.sans.org/reading-
room/whitepapers/intrusion/network-ids-ips-deployment-strategies-
2143.

J. Grunzweig, M. Scott, and B. Lee, New Wekby
Attacks Use DNS Requests As Command and Control
Mechanism, Palo Alto Networks. [Online]. Available:

https://researchcenter.paloaltonetworks.com/2016/05/unit42-new-
wekby-attacks-use-dns-requests-as-command-and-control-mechanism/.

”APT32 Un-usual Suspects, FireEye. [Online]. Available:
https://content.fireeye.com/apt/rpt-apt38.

Aeris 2.1 User Guide, CIA. [Online]. Available:
https://wikileaks.org/vault7/document/Aeris-UsersGuide/Aeris-
UsersGuide.pdf.

At the Center of the Storm: Russias APT28 Strategically

Evolves its Cyber Operations, FireEye. [Online]. Available:
https://www.fireeye.com/current-threats/apt-groups/rpt-apt28.html.
En Route with Sednit Part 2: Observing the Comings and Go-

ings, eset. [Online]. Available: https://www.welivesecurity.com/wp-
content/uploads/2016/10/eset-sednit-part-2.pdf.

Cobalt Strike: Advanced Threat Tactics for Pene-
tration Testers, Cobalt Strike. [Online]. Available:

https://www.cobaltstrike.com/downloads/csmanual312.pdf.

A. Dahan, Operation Cobalt Kitty: A large-scale APT in Asia car-
ried out by the OceanLotus Group, CyberReason. [Online]. Available:
https://www.cybereason.com/blog/operation-cobalt-kitty-apt.

